skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wei, Yifan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 15, 2026
  2. Anomaly detection in complex domains poses significant challenges due to the need for extensive labeled data and the inherently imbalanced nature of anomalous versus benign samples. Graph-based machine learning models have emerged as a promising solution that combines attribute and relational data to uncover intricate patterns. However, the scarcity of anomalous data exacerbates the challenge, which requires innovative strategies to enhance model learning with limited information. In this paper, we hypothesize that the incorporation of the influence of the nodes, quantified through average controllability, can significantly improve the performance of anomaly detection. We propose two novel approaches to integrate average controllability into graph-based frameworks: (1) using average controllability as an edge weight and (2) encoding it as a one-hot edge attribute vector. Through rigorous evaluation on real-world and synthetic networks with six state-of-the-art baselines, our proposed methods demonstrate improved performance in identifying anomalies, highlighting the critical role of controllability measures in enhancing the performance of graph machine learning models. This work underscores the potential of integrating average controllability as additional metrics to address the challenges of anomaly detection in sparse and imbalanced datasets. 
    more » « less
    Free, publicly-accessible full text available May 5, 2026